「 技術ネタ関連 」一覧

15+4√2

今更ながらいつもの。本人がいたのに話し忘れていた。

比の折り出しの基本は、2つの「折り出しやすい数字」に分けることです。折り出しやすい数字とはという問題はありますが、今回の場合、4√2側に8を移して(つまり4(2+√2)だ)、7:8+4√2に分けることができます。
ということで折り出し方法を2種類。
まずは7:8と8+4√2:8(=2:2+√2)の2つの長方形の対角線を折り出す方法。
それぞれの数字に2の累乗数の「8」を組み合わせることで、折り出しやすい比率になっています。
もう一つ。1辺を8+4√2として、対応する7を折り出す方法。つける折り筋も少なく、対角線上に折り出せるので使いやすそうです。
どちらの方法も、7の側の位置は比較的簡単に変更できるので、同じような方法で「13+4√2」や「11+4√2」なども折り出せます。

おおさんしょううおの比率とその折り出し方

折紙探偵団マガジン167号に掲載された豊村高志さんのおおさんしょううお、記事では折り出しやすい近似値を利用していますが、実際はどのような比率なのでしょうか? またどのように折り出せばいいのでしょうか?

※実際に折る時には問題にはならない程度ですが、小さなズレがあります。

比率を求める

複雑な比率を計る時は、縦横に基準線を加えると分かりやすくなります。
ぜひマガジンの展開図と比べてみて下さい。

内側の部分で数字を取り出します。中略。結果、脚のカドになる点の両側は、
4+2√2:2.5+2√2
となります。2.5ってなんだよ。

数値の約分

0.5を扱い易くするためにまず2倍にします。
8+4√2:5+4√2
それにしても数字が大きい。もう少し分かりやすい数字にできないでしょうか?

ここで利用するのが、「1+√2:2+√2 = 1:√2」。

ということで、それぞれ1+√2で割ります。つまり、
4(2+√2):3(1+√2)+(2+√2)
=4√2:3+√2
かなりシンプルな数字になりました。

折り出し

とりあえず、合計して1辺全体の長さを求めます。
3+5√2
いろいろな可能性が考えられますが、今回については2√2と3+3√2に分けて折り出すのがよさそうです。折り出したい点との相性もいいし。
次、考えやすさののため、全部√2倍します。(必然ではありませんが、√が少ない方が分かりやすいという程度の理由です。)
2√2:3+3√2
=4:6+3√2
折り出しやすそうな数字になってきました。
3√2の「3」をどのように折り出すかだけが問題ですが、今回は4:3の長方形を利用して折り出します。
それぞれの比率を横幅、縦幅を3とすると、折り出しに必要な長方形は「4:3」と「3(2+√2):3 = 2+√2:1」で、どちらも簡単に折り出せる比率です。

折り手順

実際の折り手順は以下のようになります。顎になる点が折り出せますね。

以上、使った事のない比率だったので考えてみました。


ヒダと22.5度構造

こんな感じのカドに横向きのヒダを入れたい。半分諦めながらいろいろと試した結果……

きれいにまとまった。素晴らしい。

経験則として、「周りの構造の条件に無理が無ければ、大抵きれいな折り畳み方の解が存在する」と考えているのだけど、今回のケースは当てはまるようだ。



シッポ・マボナさんのアリの折り出し

2010年のメモが案外面白かったので。需要はについては考えない。


シッポ・マボナさんのアリの構造が面白い。左右の1:2の長方形にそれぞれ6つのカドが詰め込まれているという、サークルパッキングらしい、無駄の無い構造だ。 ただし、折り出しはそう簡単ではない。さて、どう折り出す? というか、折るだけでいけるのか?

http://snkhan.co.uk/forum/viewtopic.php?t=7466

形を見ていると、なんとなく任意角の三等分を思い出すのだが、あまり関係がなさそうだ。そもそも「3等分する角度」か「3等分の起点」が分かればそれがほぼ答えだという事にすぐに気がついた。これは一旦忘れよう。

似てはいるんですけどね。


整理しよう。折り出したいのは、横の辺に位置するカドの点、もしくはカドの折り込んである線の角度だ。この場合、どちらかというと角度の方が折り出しやすそうな気がする。紙の横のカドの間隔(カドの長さを1として、この長さを2としておこう)を適当なところに折り出して、それを基準に紙の上下の点を折り出すのがよさそうだ。

で、あとはこの2の長さの円周上のどこかに上下の辺のカドがある訳だ。 なにか他にもうひとつ基準はないか……ある。

展開図で見た場合、上辺のカドと横の辺の中間点を結ぶ線は、1:2の対角線になっている。これと上記の半径2の円を組み合わせればいい訳だ。

 

 

で、実際の手順。効率化してあるけれど、基本的な考え方は上記の基準を利用している。

以上。もっと良い手順があるかもしれないけど、とりあえず折り出せる事は分かったので満足。


2011/11追記。 少し後で、展開図を眺めていて、ふとまったく気がついていなかった解を見つけた。漸近法が使える!!すげえ。これ、手順がループするようなかたちで必要な点を出せば、結構応用できるんじゃないかな。


斜めヒダ構造2種

ヒダの角度を変える。ウロコ等に使えるが、使い勝手はあまりよくない。

 

斜めに模様を入れる構造。使い道はまだ決めていない。表側だけでなく裏側も素敵です。


等分方法と整数比角度系・グリッド系設計法

10年以上前に考えた等分方法についての事と、最近の設計法が実は密接に関連していたという話。

まずは等分方法から。 切っ掛けはこの5等分。

これが何故5等分になるのかといろいろ考えていて、(なぜか)折る線が√5であることに注目、折る線の2乗等分が成立するのではないか?と思いついた。

数字を簡単に追ってみた結果、捉え方はいろいろあるにせよそれ自体は問題なさそう。ということで、やってみたのが1:4(√16)の対角線(√17)を使った17等分。

結果は成功。17等分の方法としてはかなり使いやすいのではないだろうか。

次に3等分。使うのは1:√2:√3の直角三角形、このうち折る線は√3、言い換えると1:√2の長方形の対角線になる。

√が絡むと折り出し辛いけれど、比率によっては素数等分を相当短い手順で折れる。 この段階では「ちょっと面白い等分方法で、実用面では1:√2の長方形を3等分する時に便利そう」というくらいにしか考えていなかった。


で、次が最近の話。

いわゆる神谷パターンや整数比角度系、ラングさんのsterling gridなどがいろいろと研究されているわけなのですが、先週末ごろTwitterでの話題を見ていて、上記の等分方法って実はこれらと密接に関連していたんだなと、いまさら気がついた。

この等分方法は、折ったカドの位置で縦横両方の等分が同時に出来ます。つまり、縦横等分する・カドはその等分グリッドに乗っている上に、整数の対角線ができる……他他数字から実用面までしっかり関連している。

5等分の場合、カドの位置から左側を見てみると3:4:5のいわゆる神谷パターンになる事がわかります。3等分はラングさんのsterling gridとかですね。

そして同時に気がついたのが、恐らく逆もいける。つまりこの等分方法の結果から、なんらかのグリッドが成立する。使いやすさに差はあると思うけれど、少なくとも指定の単位で折り畳める角度のセットが得られる。ベースとなる角度も比率もすぐに分かる。とりあえず整数の対角線だけはいくつか試してみたけれど、見事にピタゴラス数の構造になった。


という感じにいろいろ繋がって腑に落ちたと同時に、神谷パターンを見つけた時に感じた、「絶対他にもあるはず」という直感は当たっていたことを、とりあえず確認できたので満足したというそれだけの話。


3色30枚組の話

ずいぶん前のコンベンションで宮島さんに聞かれてた問題。実は少し後に答え自体は出ていたのだけれど、放っておいて今に至る。

http://origamigasakebuyoru.seesaa.net/article/388906614.html

パターンの分析

正20面体の辺の色分けと考えるのが、個人的にはやりやすいと思う。

まず思いついたのが、それぞれの色各10枚の位置関係は対称にはならない事。正多面体の対称性を考えると、いくつかの種類に別れるはず。10の対称”面”ならあるけれど、今回はあまり使えなさそう。

次に色分け図を見て気がついたのが、5本の辺がそれぞれ繋がっている事と、それが6本絡み合っている事。これはよく考えると当たり前の話で、各頂点には5本の辺が集まっているので、3色での色分けでは必ず1:2:2となる。この1が6本の色線の端になる。で、頂点は12なので色線は6本となる。

整理されてきた。 まず、6本3色であれば対称性が分かりやすい。正四面体の各辺だ。 さらに色分け図を詳しく見ると、5本の辺はS字に曲がっている事に気がつく。たしかにこれ以外では無理っぽい。正20面体=変形正四面体であると考えれば、納得の対称性と位置関係。という事で、構造的には右巻きと左巻きの2種類がある。

※印の辺が5本繋がっている中心の辺

 

具体的な組み方

1. まず20面体の頂点5枚を組む。色はa(青)×1:b(赤)×2:c(緑)×2になる。

2. その周りを組んで三角形の面5つをつくる。これは自動的に決まる。使うのはa(青)×3:b(赤)×1:c(緑)×1。

 

3. 手順1でa(青)を使っている頂点(白印)に注目、a(青)ともう1つ(b(赤)またはc(緑))を合わせて頂点をつくる。

印の頂点を手前にする。

a(青)ともう1つ(図ではc(緑))で頂点をつくる。

4. 3つ組み合わせて三角形の面3つをつくる。

5. 2カ所あるユニットが4つ集まっている頂点のうち、片方は両側の色が違うため確定している。3つ組み合わせて面を2つつくる。

4つのユニットが集まっている印の頂点を手前に。

色はc(緑)に確定している。両側も組み合わせる。

6. あとは確定している頂点・面を順番に埋めていけば完成。

印の頂点はつなぐパーツの色が確定済。それぞれ組んで進めていけば全体が組み上がる。

 

ポイントとなるのは3の手順で、ここで正しい色のパーツを組む事で巻き方向を確定、残りの色も全て決まります。逆にここで間違えて緑と赤を組んでしまうと、少し先で行き詰まります。線対称になっているので、2つ先くらいの手順で同じ色が隣り合うはず。

これはダメなパターン。青のパーツが赤と緑で取り囲まれている。


1/3の折り出し、成功と失敗について

三等分の方法と、三等分にならない方法を同時に見つけた話。

まずは以下の図をご覧下さい。1/3の折り出し方です。

ここで問題:どこが3等分になっているのでしょうか?

 

 

まずは正解から。斜めの方の点が正解で、図のように3等分しています。なお、実用性はあまり無いです。使い易くはないし、この方法を使わなければいけない必然性も思いつかない。当然、これが実際に使われている図などを私は知りません。

で、こっちはハズレ。折ってみた時はもしかしたらと思ったけれど、確認したら違った。ただ、これが妙に惜しくてちょっと面白い。

長さはピタゴラスの定理で簡単に確認できます。紙の1辺を12とすると、幅は9、高さは7.93725…..となります。15cmの紙の場合、1/3とは1mm程度の誤差です。

ちなみに、正確に3等分できる場合の三角形の面積は幅9×9+高さ8×8=145。このケースの面積は斜辺12×12=144なので、残念ながら1ずれています。

以上、多分実用性はないけれど、方法を見つけた本人が面白かっただけの話です。


「架空の折り紙作品」

 

折紙探偵団マガジン152号に掲載されたヒツジの創作記事について、実はスペースの都合で削った項目があります。記事の内容は、先に完成の形を決めて、それを目指して創作する方法というようなものなのですが、最後に以下のような内容を用意していました。

 


気がついた方もいるかもしれませんが、この創作手順は「架空の作品をにらみ折りする」と言い換える事が出来ます。さらに考えてみると、架空の作品の形を考える作業とそれを実際に折る作業は、実は同じ人間が行う必然性はありません。理屈の上では分業体制での創作もできそうです。実際に、折り紙をモチーフとしたロゴや、漫画などに登場する架空の作品を、にらみ折りして再現したというケースもあります。創作体制として分業や、「架空の折り紙作品」は作品として認められるのかなど、いろいろ考えてみると面白いかもしれません。


 

まあ実際にどういった形になるかはいろいろな可能性がありますが、例えば人間が形を決めて、それをプログラムで再現するというのは不可能ではなさそうです。これも一種の分業ではあります。折り紙の創作は「形」と「構造」、そして「手順」が不可分なのか、それとも完全に切り分けることが可能なのか。誰か試してみませんか?

※画像は折紙探偵団マガジン152号より。試作の際の脳内完成イメージ。これは構造まで考えて描いたものなので再現性は異常に高い。